Non-standard Finite Difference Schemes for Solving Fractional Order Hyperbolic Partial Differential Equations with Riesz Fractional Derivative
نویسندگان
چکیده
In this paper, the Mickens non-standard discretization method which effectively preserves the dynamical behavior of linear differential equations is adapted to solve numerically the fractional order hyperbolic partial differential equations. The fractional derivative is described in the Riesz sense. Special attention is given to study the stability analysis and the convergence of the proposed method. Numerical studies for the model problems are presented to confirm the accuracy and the effectiveness of the proposed method. The obtained results are compared with exact solutions and the standard finite difference method.
منابع مشابه
On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملA numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative
In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...
متن کاملThe Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملA finite difference technique for solving variable-order fractional integro-differential equations
In this article, we use a finite difference technique to solve variable-order fractional integro-differential equations (VOFIDEs, for short). In these equations, the variable-order fractional integration(VOFI) and variable-order fractional derivative (VOFD) are described in the Riemann-Liouville's and Caputo's sense,respectively. Numerical experiments, consisting of two exam...
متن کامل